

IMRT plan QA with the IQM detector

Sonja Wegener, Barbara Herzog, Otto A. Sauer

Klinik und Poliklinik für Strahlentherapie Direktor: Prof. Dr. M. Flentje

(De-)Motivation for IMRT-QA

- Why we measure every plan
 - Mandatory: guidelines, task group reports, DIN
 - Finding the one faulty plan in 50 plans¹

¹Pulliam et al., J. Appl Clin Med Phys.; 15(5):4935

- Why we (sometimes) wish we did not
 - Finding reasons for deviations is time-consuming
 - Too many false alarms, often caused by user-error

→ demand for an easy-to-use QA tool

The IQM detector

- Position-weighted dose-area product
- inclination in MLC movement direction
- Attached to gantry
- Includes barometer, thermometer and inclinometer
- Bluetooth connection to workstation

M. Islam et al., Med. Phys. 2009, 36 (12): 5422

- Signal per segment and cummulative signal per field are compared to calculation
- uses Dicom RTPlan for calculation
- detector commissioned using a variety of field sizes and shapes

Evaluation of IQM

- General characterization
- Influence of transmission detector on beam
 - participation in multi-center study
- Validation of calculation algorithm for wide spectrum of clinical cases
 - including plans with long (>26 cm) fields
- Tests with induced errors
- Comparison with currently used QA approaches

The full spectrum of IMRT fields with IQM

 Over 100 fields of different plan types were measured and compared against the calculation

- Agreement with calculation:-0.2% (±1.3%)
- Tolerance levels:3% action2% warning

Long (>26cm) IMRT fields with IQM

- Over 100 fields of different plan types were measured and compared against the calculation
- Mamma results show slightly higher deviation than average plans

- Agreement with calculation comparable to overall IMRT results: +0.4% (±1.4%)
 - → IQM can be used for long field IMRT

Induced errors

- 3 clinical plans were modified
- Errors had a clinical effect: DVH parameters of either the targets or organs at risk changed a few %

Brain	Prostate	Head&Neck	
	central leaf stuck in field		
energy change from 6 MV to 10 MV			
additional optimization step			
2 mm	one leafbank	one leafbank	
field shift	opened 2 mm	opened 2mm +	
		5.4% MU reduction	

leaf error

additional optimization step

Error Detection with IQM

 Number of deviating fields (9-field plans) for the IQM signal deviation >3% (>2%)

Type of Error	Brain	Prostate	H&N
leaf	6 (9)	2 (3)	2 (4)
energy	7 (9)	4 (9)	9 (9)
optimization	3 (4)	6 (7)	4 (5)
leafbank shift	0 (0)	9 (9)	0 (0)

field position changed

field size and MU changed

- → Only one undetected error!
- Remaining error would have been caught with thorough machine QA in addition to plan QA!
- IQM as a daily machine QA constancy test?

Comparison to other QA tools

- Error plans were also measured with other QA tools
- ▶ IQM error detection superior to other QA procedures!

Type of Error	Brain	Prostate	Head&Neck
leaf	6 (9)	2 (3)	2 (4)
energy	7 (9)	4 (9)	9 (9)
optimization	3 (4)	6 (7)	4 (5)
leafbank shift	0 (0)	9 (9)	0 (0)

Type of Error	Brain	Prostate	Head&Neck
leaf	-7,3	-7,9	-0,4
energy	+4,3	+2,9	+4,8
optimization	+0,2	-2,1	+0,3
leafbank shift	0	+1,2	-1.0

Type of Error	Brain	Prostate	Head&Neck
leaf	94.8 (89.9)	96.1 (93.0)	96.9 (93.3)
energy	96.4 (90.6)	99.4 (95.4)	99.8 (98.1)
optimization	99.0 (95.7)	96.0 (86.2)	96.4 (90.7)
leafbank shift	98.7 (95.8)	90.1 (77.4)	97.4 (91.3)

IQM 3% (2%)

ionization chamber in cube phantom ±3%

γ evaluation on cylindrical phantom 3%/3mm>98% (2%/2mm>95%)

Conclusions

- IMRT signal agreement with calculation: -0.2% (±1.3%)
- Long field agreement: +0.4% (±1.4%)
- ▶ IQM can be used for field sizes up to 40x40 cm
- very limited user-interaction necessary
- IQM showed a higher error detection rate:
 3% action level, 2% warning level
- Ongoing projects:
 - Analysis for VMAT is in progress
 - daily constancy test for machine QA with IQM

