BREAKING BARRIERS TO BEAT CANCER

Online quality assurance of external beam radiation therapy with an integrated quality monitoring system

David Hoffman, Ph.D. University of California, Davis Resident Physicist July, 2015

Integral Quality Monitor (IQM)

- Large area ion chamber
- iRT Systems
 GmbH (Koblenz, Germany)
- Attaches to the accessory tray
- Online checksum QA for photon beams

Overview

- Evaluate the stability and accuracy of each feature of the IQM.
- Determine much medical physics work is needed to bring the IQM into a clinic.
- Quantify how sensitive is the device to beam delivery errors.

Chamber Characteristics

- Ion chamber thickness gradient in the axis of MLC motion
- Inclinometer for gantry and collimator angle measurement
- Wireless connection

Ion chamber gradient

Effect on Photon Beams

RADIATION ONCOLOGY

Attenuation of photon beams:

- $6 \text{ MV} 5.43 \pm 0.02\%$
- $10 \text{ MV} 4.60 \pm 0.02\%$
- $15 \text{ MV} 4.21 \pm 0.03\%$
- Symmetry and flatness is unchanged
- Beam profiles agree with within 1% outside of the penumbra
- Presence of the IQM can be accounted for with a tray factor

Ion chamber evaluation

Further evaluation

- IQM thermometer agreed to the calibrated thermometer to within 1.0 ± 0.7°C
- IQM barometer agreed to the mercury barometer to within 2.3 ± 0.4 mmHg
- IQM inclinometer agreed with the spirit level for gantry:
 - 0 and 180 degrees within 0.03 ± 0.01 degrees
 - 90 and 270 degrees within 0.27 ± 0.03 degrees
- For the collimator angle measurement, the IQM inclinometer agreed with the plum-bob within 0.3 ± 0.2 degrees with the gantry at 90 degrees.
- No Collimator angle readout when the gantry is within ~5 degrees of 0 or 180 degrees

Simulated errors

- Modifications to the photon beams results in changed ion chamber response
- Simulated errors were detected in 6 MV 10×10 cm² photon beam
- Twice the SD of the stability (1%) of the measurement was considered a "detected" error

Modification	% signal change	Magnitude of modification for 1% change
1% decreased MU	-0.99± 0.01%	-
1% increased MU	1.00 ± 0.03%	-
1 mm single MLC leaf into field	-0.05 ± 0.01%	13 mm
1 mm single MLC leaf out of field	0.01 ± 0.01%	25 mm
1 mm field shift in MLC motion axis	0.42 ± 0.06%	3 mm
1 mm field shift in MLC non-motion axis	0.20 ± 0.13%	Not sensitive
Incorrect energy (10 MV)	0.8 ± 0.02%	-
Incorrect energy (15 MV)	2.85 ± 0.01%	-

Small fields

- The IQM does not have a finite detector size
- For small fields (SBRT), this changes the detectable errors
- Simulated errors were detected in 6 MV 1×1 cm² photon beam

Modification	% signal change	Magnitude of modification for 1% change
1% decreased MU	-1.1± 0.4%	-
1% increased MU	1.02 ± 0.3%	-
1 mm single MLC leaf into field	-0.7 ± 0.2%	1.5 mm
1 mm single MLC leaf out of field	0.5 ± 0.3%	1.5 mm
1 mm field shift in MLC motion axis	0.1 ± 0.3%	4 mm
1 mm field shift in MLC non-motion axis	0.6 ± 0.4%	Not sensitive
Incorrect energy (10 MV)	8.5 ± 0.3%	-
Incorrect energy (15 MV)	15.1 ± 0.3%	-

VMAT evaluation

- Two VMAT prostate plans were repeatedly measured
- IQM ion chamber measurement SD = 0.16%

Ongoing investigation

IQM measurement in further applications:

- Conventional 3D
- IMRT
- VMAT
- SBRT
- High dose rate
- Evaluation of treatment error detection sensitivity

Conclusions

- The IQM demonstrated:
 - Valid temperature and pressure correction
 - Useful gantry and collimator angle readings
 - Valid and reproducible photon beam measurements
 - Sensitivity to simulated beam delivery errors
- Useful for online patient quality assurance
- Implementation does not require recommissioning of the treatment beams